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Abstract

In dielectrics, glasses and networked liquids it is very common to study noise spectra with extended power-law regions
to gather useful information. Experimental noise spectra are often characterized by 1/fa regions with different a and other
features such as very wide resonances. Because of the overall power-law behavior these spectra are extremely difficult to fit
with standard methods. Here I propose a model-based fit procedure that performs well on spectra obtained in a molecular
dynamics simulation.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1/f a noises are very common and affect many measurements; the literature on this subject keeps growing
and the apparent ubiquity of these noises has always drawn a great deal of attention. In the experimental prac-
tice, they are both a nuisance and a peculiarity of several physical systems; in dielectrics, glasses and net-
worked liquids it is very common to study these noises to gather useful information [1–5]. Sometimes it
happens that the noise has a power-law shape only in a certain frequency range which spans several decades,
and at the same time contains other important features, that are however difficult to study because simple fits
often fail. The main reason of this failure is that the prominent low-frequency peak biases the fit so much that
the minute and mostly high-frequency features are neglected. Here I propose a model-based fit procedure that
bypasses this problem and that performs well on spectra obtained in a molecular dynamics simulation of
water.

In the rest of this introduction I review the classic superposition argument that relates power-law spectra to
the single exponential relaxation processes; in Section 2 I analyze the properties of the autocorrelation func-
tion of 1/fa spectra; in Section 3 I consider the spectral behavior associated to some well-defined distributions
of relaxation rates; finally in the last section I show the results of a model-based fit in the case of a molecular
dynamics simulation of liquid water, and I summarize my conclusions.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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A mathematical mechanism for producing 1/fa noise was proposed long ago by Bernamont [6], who
observed that the superposition of many Lorentzian spectra with a certain distribution of different rates could
produce a spectral density with a 1/f region. The Bernamont superposition argument can be made rigorous
with a slight modification of the standard proof of Campbell’s theorem [7], and it goes as follows. Take a sig-
nal x(t) originated by the linear superposition of many random pulses, i.e., pulses that are random in time and
can be described by a memoryless process with a Poisson distribution, have random amplitude A drawn from
a distribution with finite variance and probability density gA(A), and such that their pulse response function
h(t,k) = exp(�kt) (if t > 0, otherwise h(t,k) = 0) is drawn from a distribution with probability density gk(k).
The pulses are received and detected with a rate n(A,k) which in general depends both on the amplitude A

and on the decay rate k. The pulse arrival process is Poissonian and thus one detects on average
[n(A,k)dAdk]dt pulses in the time interval (t 0,t 0 + dt) (and in the amplitude-k range dAdk); for the same reason
the variance of the number of detected pulses is also equal to [n(A,k)dAdk]dt. This means that the mean square
fluctuation of the output signal at time t is given by the integral
hðDxÞ2i ¼
Z kmax

kmin

gkðkÞdk
Z Amax

Amin

gAðAÞdA
Z t

�1
dt0nðA; kÞ Ahðt � t0; kÞ½ �2 ð1Þ
If we assume that the rate of occurrence n does not depend on A and k, and rearrange the time integration,
then the integral (1) simplifies to
hðDxÞ2i ¼ nhA2i
Z kmax

kmin

gkðkÞdk
Z 1

0

dt½hðt; kÞ�2 ð2Þ
Now let H(x,k) be the Fourier transform of h(t,k), then from the causality constraint on h(t,k) and Parseval’s
theorem we find that the mean square fluctuation (2) can be transformed into
hðDxÞ2i ¼ nhA2i
2p

Z kmax

kmin

gkðkÞdk
Z 1

�1
dxjHðx; kÞj2 ¼ nhA2i

2p

Z 1

�1
dx
Z kmax

kmin

gkðkÞdkjHðx; kÞj2 ð3Þ
The right-hand expression in Eq. (3) shows that the spectral density is
SðxÞ ¼ nhA2i
2p

Z kmax

kmin

gkðkÞdkjHðx; kÞj2 ð4Þ
and since |H(x,k)|2 = (x2 + k2)�1 we obtain eventually
SðxÞ ¼ nhA2i
2p

Z kmax

kmin

gkðkÞ
x2 þ k2

dk ð5Þ
If we assume that the decay rates k are uniformly distributed between kmin and kmax (i.e.,
gk(k) = (kmax � kmin)�1) the spectral density becomes
SðxÞ ¼ nhA2i
2pðkmax � kminÞ

1

x
arctan

kmax

x
� arctan

kmin

x

� �
ð6Þ
so that S(x) is approximately constant if 0 < x� kmin� kmax, and it is approximately equal to
nhA2i
2pðkmax � kminÞ

1

x2
ð7Þ
if kmin� kmax� x, while it is approximately equal to
nhA2i
4ðkmax � kminÞ

1

x
ð8Þ
in the region in between the extreme rates (kmin� x� kmax).
The spectral density (6) has an intermediate region with a 1/f behavior, however most observed spectra are

not quite 1/f but rather 1/fa with a ranging from about 0.5 to nearly 2: how can we obtain such spectra using a
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superposition as above, i.e., sampling a distribution of relaxation processes? We could take, e.g. a non-
uniform distribution of relaxation processes like gk � k�b, then in the region kmin� x� kmax we would find
SðxÞ /
Z kmax

kmin

1

x2 þ k2

dk

kb ¼
1

x1þb

Z kmax=x

kmin=x

1

1þ ðk=xÞ2
dðk=xÞ
ðk=xÞb

ð9Þ

� 1

x1þb

Z 1

0

1

1þ x2

dx
xb

ð10Þ
We shall return to these distributions in Section 3.

2. The rate distribution from the correlation function

We see that from a given rate distribution we obtain a certain spectral density: can we do the reverse and
obtain the rate distribution from a given spectral density? This is not obvious because the spectral density is
only a second-order statistics, and does not contain phase information (nor is it possible to preserve it for a
noise process). However the answer is yes, the rate distribution can be recovered from the spectral density.
This can easily be seen from the formal Taylor expansion of the denominator in the integral (5):
SðxÞ ¼ nhA2i
2px2

Z kmax

kmin

gk

X
k¼0;1

� k
x

� �2k

dk ¼ nhA2i
2px2

X
k¼0;1

�1

x

� �2k

hk2ki ð11Þ
This expansion is only formal inasmuch as it does not converge everywhere, however it shows unequivocally
that the shape of S(x) depends only on the even moments about the origin of the probability density gk. A
probability density function is uniquely determined by the knowledge of all the moments Æknæ (see, e.g. [8]),
and the even moments alone are not enough, but we could still do without the odd moments if the probability
density function were an even function. This is not so, because the decay rates k must be non-negative, and
thus the associated probability density function does not have any definite parity. However a probability den-
sity function which is non-zero only for positive values of the decay rates can be written in a unique way as the
sum of an even and an odd function gkðkÞ ¼ gðoddÞ

k ðkÞ þ gðevenÞ
k ðkÞ, where gðoddÞ

k ðkÞ ¼ gðevenÞ
k ðkÞ ¼ gkðkÞ=2 if

k P 0 and gðoddÞ
k ðkÞ ¼ �gðevenÞ

k ðkÞ ¼ �gkð�kÞ=2 if k < 0, therefore the odd moments can be computed from
the even moments of the distribution, and the even moments alone uniquely identify the rate distribution.

The previous result is only formal and does not yield a practical inversion formula; the actual inversion can
be performed in the time domain when we recall that the spectral density S(x) is related to the correlation
function R(s) by the Wiener–Kintchine theorem
RðsÞ ¼ 1

2p

Z þ1

�1
SðxÞeixs dx ð12Þ

¼ 1

2p

Z þ1

�1
eixs nhA2i

2p

Z kmax

kmin

gkðkÞ
x2 þ k2

dkdx

¼ nhA2i
2p

Z kmax

kmin

gkðkÞ
1

2p

Z þ1

�1

eixs

x2 þ k2
dxdk

¼ nhA2i
2p

Z kmax

kmin

gkðkÞ
e�kjsj

2k
dk ð13Þ
then we see from Eq. (13) that the correlation function is also the Laplace transform of gk(k)/(2k), and the rate
distribution function is uniquely determined by the spectral density and can be retrieved by means of a
numerical inverse Laplace transform. In practice, rather than a numerical evaluation of the inverse Laplace
transform, one is forced to fit a discrete set of decaying exponentials, and moreover from the correspondence
between the Bromwich inversion integral and the inverse Fourier transform, and from the sampling theorem,
we see that we must sample the time correlation function, and therefore the noise signal, at a frequency at least
twice as high as kmax to retrieve gk. Notice that because of the k in the denominator of the integrand in (13), the
slow relaxations are more heavily weighted in the integral, and the high-frequency parts of the decay rate
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distribution are much harder to recover than the low-frequency parts; this makes even harder an inversion
task which is already known to be very difficult [9].

The mixtures of decaying exponentials that characterize many experimental measurements differ signifi-
cantly only at very short times, while for longer times all the exponentials are equally buried in noise. Disen-
tangling the mixture and finding the relative weights of the different components is possible only if sampling
times are very closely spaced at the beginning (and one common strategy is to use logarithmically spaced sam-
pling times (see, e.g. [10])) and only if one includes some form of prior or assumed knowledge of the distribu-
tion of decay rates. There are very few well-established procedures to do this, and the best known are the
programs CONTIN and UPEN. CONTIN [11] uses the following strategies: (a) it takes into account absolute

prior knowledge, i.e., whichever exact information that may be available at the beginning, like the non-nega-
tivity of decay rates; (b) it assumes some statistical prior knowledge as well, which is essentially the knowledge
of the statistics of the measurement noise; (c) it uses a principle of parsimony, which is similar to the principle
of maximum entropy, though not as well defined. UPEN (Uniform PENalty) [12] assumes instead a priori that
the distribution of decay rates is a continuous function and penalizes distributions which are either discontin-
uous or have wildly varying curvature.

In addition to constraints on the shape of the distribution function it is common to use some well-defined
standard functions that appear to fit very well many sets of experimental data; the Kohlrausch–Williams–
Watts function describes stretched exponentials and works well for relaxations in the time domain and sim-
ilarly the Havrilijak–Negami (HN) function provides good fits to spectral data. These empirical functions
are well-known, and in particular from the HN spectral shape it is possible to compute analytically the dis-
tribution of relaxation rates [13]. However, even though these functions often give satisfactory fits, it would
be much better to connect data from experiments or numerical simulations to some well-defined, simple dis-
tribution of relaxation rates, just like the spectral density in Eq. (6) can be directly related to a flat distribution
of relaxation rates: in the following section I give a list of such spectral shapes.

3. A gallery of spectral densities

The spectral density in Eq. (6) produces an intermediate region with a 1/f behavior, and includes both a
minimum and a maximum relaxation rate: at a frequency lower than the minimum relaxation rate the spectral
density whitens and becomes nearly flat, while at a frequency higher than the maximum relaxation rate the
spectral density bends downward and assumes a 1/f2 behavior, and for fitting purposes we define the standard
spectral density
Sflatðx; kmin; kmaxÞ ¼
1

x
arctan

kmax

x
� arctan

kmin

x

� �
ð14Þ
However either the minimum or the maximum relaxation rate (or both) may be out of the experimental or
numerical simulation range: in these cases the bends at low- and high-frequency become invisible, and a fit
with the spectral density (14) is unstable (at least one of the range parameters is invisible and the v2 hypersur-
face flattens out in that direction, adversely influencing the fit). This can be corrected using the modified spec-
tral density
Sflat;Aðx; kminÞ ¼
1

x
p
2
� arctan

kmin

x

� �� �
ð15Þ
when the maximum observable frequency is smaller than the maximum relaxation rate (and the minimum
relaxation rate is in the observable range). We should use instead the spectral density
Sflat;Bðx; kmaxÞ ¼
1

x
arctan

kmax

x

� �
ð16Þ
when the minimum observable frequency is higher than the minimum relaxation rate (and the maximum ob-
servable rate is in the observable range), and finally the spectral density
S1overfðxÞ ¼
1

x
ð17Þ
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when both the minimum and the maximum relaxation rates are out of range; the spectral densities (6), (15) and
(16) are shown in Figs. 1–4. Using (15), (16) or (17) improves the fit stability but means that the final descrip-
tion of the relaxation rate distribution is incomplete.

We have already given a simple argument that shows that a non-uniform distribution of relaxation pro-
cesses like gk � k�b between the maximum and minimum relaxation rates kmin, kmax, produces a spectral den-
sity with an intermediate 1/f1+b region: an exact integration yields the spectral density
Fig. 1.
spectra
Splðx; kmin; kmax; bÞ ¼
1

ð1� bÞx2
k1�b

maxF
1� b

2
; 1;

1� b
2

;
�k2

max

x2

� �
� k1�b

min F
1� b

2
; 1;

1� b
2

;
�k2

min

x2

� �� �

ð18Þ
where F ða; b; c; zÞ ¼
P1

k¼0
ðaÞkðbÞk
ðcÞk

xk

k!
is the hypergeometric function and b 2 (�1,1). Just as in the 1/f case either

the minimum or the maximum relaxation rate (or both) may be out of the experimental or numerical simu-
lation range and a fit with the spectral density (18) becomes unstable, and this can be corrected with the mod-
ified spectral densities
Spl;Aðx; kmin; bÞ ¼ Lðx; bÞ � 1

ð1� bÞx2
k1�b

min F
1� b

2
; 1;

1� b
2

;
�k2

min

x2

� �� �
ð19Þ
when the maximum observable frequency is smaller than the maximum relaxation rate (and the minimum
relaxation rate is in the observable range) and where the function
Lðx; bÞ ¼ lim
kmax!1

k1�b
max

ð1� bÞx2
F

1� b
2

; 1;
1� b

2
;
�k2

max

x2

� �
ð20Þ
is shown in Fig. 4 and is well approximated by the rational function
p
2x1þbeta

1

1þ c2b
2 þ c4b

4 þ c6b
6 þ c8b

8 þ c10b
10

� � ð21Þ
with

(1) c2 � � 1.2337
(2) c4 � 0.253669
(3) c6 � � 0.0208621
(4) c8 � 0.000917057
(5) c10 � � 0.0000235759
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Plot of the spectral density (6) (solid line); the dotted, dashed-dotted, and dashed lines represent, respectively, 1/f, 1/f 1.5, and 1/f 2

. Both spectral values and frequencies are given in arbitrary units; here kmin = 1 (a.u.) and kmax = 1000 (a.u.).
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Fig. 2. Plot of the spectral density (15) (solid line); the dotted, dashed-dotted, and dashed lines represent, respectively, 1/f, 1/f 1.5, and 1/f 2

spectra. Both spectral values and frequencies are given in arbitrary units; here kmin = 1 (a.u.).
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Fig. 3. Plot of the spectral density (16) (solid line); the dotted, dashed-dotted, and dashed lines represent, respectively, 1/f, 1/f 1.5, and 1/f 2

spectra. Both spectral values and frequencies are given in arbitrary units; here kmax = 1000 (a.u.).
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Fig. 4. Graph of the function ½2x1þbeta

p Lðx;bÞ� (this product depends on b alone); the dots are obtained from numerical estimates of the r.h.s.
of equation (20).
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The spectral density
Fig. 5.
spectra

Fig. 6.
spectra
Spl;Bðx; kmax; bÞ ¼
k1�b

max

ð1� bÞx2
F

1� b
2

; 1;
1� b

2
;
�k2

max

x2

� �
ð22Þ
works when the minimum observable frequency is higher than the minimum relaxation rate (and the maxi-
mum observable rate is in the observable range), and finally the spectral density
S1overfðx; bÞ / 1

x1þb
ð23Þ
when both the minimum and the maximum relaxation rates are out of range (here I extend the notation of
definition (17)); the spectral densities (18), (19) and (22) are shown in Fig. 5–7.

In addition to these distributions, it is possible to consider other shapes like gk(k) � a + bk so that the
resulting spectral density from Eq. (5) is the sum of a spectral density like the one in Eq. (6) plus a term
proportional to
Z kmax

kmin

k

k2 þ x2
/ ln

k2
max þ x2

k2
min þ x2

; ð24Þ
but I shall not consider them here, since these shapes seem to be far less common than the cases discussed
above.

The integral (5) is a sum of functions that decrease for positive, increasing x and therefore cannot be an
increasing function and therefore no distribution of relaxation rates can possibly describe bumps and other
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Plot of the spectral density (18) (solid line); the dotted, dashed-dotted, and dashed lines represent, respectively, 1/f, 1/f 1.5, and 1/f 2

. Both spectral values and frequencies are given in arbitrary units; here kmin = 1 (a.u.), kmax = 1000 (a.u.), and b = 0.5.
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Plot of the spectral density (19) (solid line); the dotted, dashed-dotted, and dashed lines represent, respectively, 1/f, 1/f 1.5, and 1/f 2

. Both spectral values and frequencies are given in arbitrary units; here kmin = 1 (a.u.), and b = 0.5.
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Fig. 7. Plot of the spectral density (22) (solid line); the dotted, dashed-dotted, and dashed lines represent, respectively, 1/f, 1/f 1.5, and 1/f 2

spectra. Both spectral values and frequencies are given in arbitrary units; here kmax = 1000 (a.u.), and b = 0.5.
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small local features such as those that are observed in the spectral densities of glassy systems. These features
can be described by resonances or by groups of close resonances; the simplest choices are (a) fixed resonance
frequency and flat distribution of relaxation rates; (b) fixed relaxation rate and flat distribution of resonance
frequencies. In the case of a flat distribution of relaxation rates between the maximum and minimum rates
kmin, kmax we find
Fig. 8.
given i
k = 10
Sfrðx; kmin; kmax;x0Þ ¼
Z kmax

kmin

dk

k2 þ ðx� x0Þ2
¼ 1

x� x0

arctan
kmax

x� x0

� arctan
kmin

x� x0

� �
ð25Þ
and similarly in the case of a flat distribution of resonance frequencies between the maximum and minimum
frequencies xmin, xmax we find the spectral densities (25) and (26) are shown in Figs. 8 and 9.
Sfwðx; xmin;xmax; kÞ ¼
Z xmax

xmin

dx0

k2 þ ðx� x0Þ2
¼ 1

k
arctan

x� xmin

k
� arctan

x� xmax

k

h i
; ð26Þ
4. Model-based fit of a simulated spectral density

When fitting spectra it is important to include the variance of spectral data: if Sk is the spectral estimate at
the kth frequency, and if the time-domain data are affected by Gaussian white noise, then the spectral estimate
of the white noise background has standard deviation Sk [14]; this estimate of the standard deviation is usually
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Plot of the spectral density (25) (solid line); the dotted, line represents a simple resonance. Both spectral values and frequencies are
n arbitrary units; here x0 = 100 (a.u.), kmin = 10 (a.u.) and kmax = 50 (a.u.), while the simple resonance has x0 = 100 (a.u.) and
(a.u.).
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Fig. 9. Plot of the spectral density (26) (solid line); the dotted, line represents a simple resonance. Both spectral values and frequencies are
given in arbitrary units; here k = 10 (a.u.), xmin = 50 (a.u.) and xmax = 150 (a.u.), while the simple resonance has x0 = 100 (a.u.) and
k = 10 (a.u.).
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assumed for simplicity even when there are deterministic components or the noise is not white. Moreover if the
final spectral density is the average of M uncorrelated spectra, then the estimate of the standard deviation at
the kth frequency is Sk=

ffiffiffiffiffi
M
p

. I wish to stress that this treatment of the spectral variance is only approximate in
the case of colored noises, but it is assumed nonetheless, because of the complexity of a calculation that
includes the correlation between different samples in the time domain (see, e.g. [15]).

I have tested the simple model-derived spectral densities described in Section 3 on data kindly provided by
Chakravarty and Mudi [16]: the original spectral data are shown in Fig. 10 and correspond to the 230 K curve
in Fig. 1(a) of reference [17] (see also [18–20] for full simulation details). At very low frequency the spectrum is
rather steep: a simple fit of the low-frequency data shows a 1/f2 behavior, and thus we can surmise that this is
just the high-frequency tail of a simple relaxation with a very low relaxation constant (this accounts for 2 fit
parameters: amplitude and relaxation rate). At higher frequency the slope is smaller and Mudi and Chakrav-
arty estimate a spectral index slightly higher than 1 [17]: since there is no hint of a downward bend, I exclude
the full spectral shape (18) and also the reduced form (22), and I choose (19) instead, i.e., I include the pos-
sibility of a low-frequency flattening, made invisible by the high-frequency tail of the simple relaxation (this
adds three more parameters to the fit: an amplitude, a minimum relaxation rate, and a spectral index b).
The high-frequency bump resembles rather closely the shape in Fig. 9, and thus it is reasonable to assume that
both the low-frequency and the high-frequency bumps correspond to flat superpositions of resonances like in
equation (26) (each bump accounts for four more parameters: an amplitude, a relaxation rate, a minimum and
a maximum resonance frequency, but the relaxation rate is taken to be the same in both bumps). The resulting
12 parameter model is:
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Fig. 10. Spectral data from [17] (230 K data in Fig. 1(a)): mean square fluctuation of potential energy vs. frequency. The overall shape is
close to a 1/fa spectrum, but notice the low-frequency steepening of the spectrum and the pair of bumps: the low-frequency steepening can
be associated to a strong single relaxation, while the bumps should correspond to two resonance distributions like those in Eq. (26).
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SðxÞ ¼ a2
1

x2 þ k2
1

þ a2
2Spl;Aðx; kmin;2; bÞ þ a2

3Sfwðx; xmin;3;xmax;3; k34Þ þ a2
4Sfwðx; xmin;4;xmax;4; k34Þ ð27Þ
Notice that the assumptions on the relaxation rate distributions help keep the number of fit parameters rather
low. If we tried to fit with a superposition of N simple relaxations we would have 2N parameters (one ampli-
tude plus one relaxation rate for each relaxation component): with 12 parameters we could fit only six simple
relaxation components, therefore the assumed shapes (that correspond to given distributions of relaxation
1
ameters for the model in Eq. (27) to the data from [17]
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. Fit to the spectral data from [17] shown in Fig. 10 (thick black curve). The data are shown in light gray in the background; the
curves a, b, c, and d represent, respectively, the first, second, third and fourth term of the model (27).
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rates and resonance frequencies) allow for a much more economical fit procedure. In this case the spectral data
are averages of M = 448 spectra; Table 1 lists the fit parameters to the data [16] obtained with a standard
Levenberg–Marquardt v2 minimization procedure, and Fig. 11 compares the fit with the data (the a amplitude
values in the table are in the spectral amplitude units of Fig. 10, the k’s and the x’s are in cm�1, and b is
dimensionless).

The model (27) is a function of both relaxation rate and resonance frequency and should thus be
described by a two-parameter distribution g(k,x0) rather than gk(k), however if we concentrate on the pro-
jection on the k axis, then we can consider only the first two terms: the (reduced) k distribution is shown
in Fig. 12, and is the sum of a delta-function plus an (unbounded) continuous distribution. Notice that
such a distribution is quite challenging for other fit methods, like those implemented by CONTIN and
UPEN.

5. Conclusion

In this paper I have described a model-based fit of power-law-like spectral densities. Like other similar
methods, it embodies a priori information on the shape of the distribution, but unlike the other methods,
the shape is physically motivated, and the fits can be efficiently performed with a reduced number of
parameters.
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